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Introduction

Distributed Estimation?

Distributed estimation

Energy limitation
Dynamic topology change
Link quality (wireless communication)

Conclusion
Low rate intersensor communication
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Introduction

Types of WSN

WSN with FC

ad-hoc WSN
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Introduction

Distributed estimation framework

signal with noise

x [n] = f [n,Θ] + w [n]

Distributed estimation framework

xk = fk (Θ) + wk

Quantization
Only quantized versions of xk are
sent: mk (xk )

How to quantize observations
efficientely?
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Estimation Theory in a nutshell

Estimators

Estimators

Estimate unknown parameters given a sampleset
Function of sampleset: θ̂ = g(x1, . . . , xN)

Classification
Classical/Fisher ET (e.g. ML, LS, BLUE)
Bayes ET (e.g. MAP, MMSE)
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Estimation Theory in a nutshell

Assessing performance

Estimator Performance

Expected value: E{θ̂} should be θ
Bias: b(θ̂) = E{θ̂} − θ
Variance: Var{θ̂} should be small
MSE: mse(θ̂) := E{(θ̂ − θ)2} = Var{θ̂}+ b(θ̂)2

Consistency: mse(θ̂)→ 0 for N →∞
MVUE: Minimum Variance Unbiased Estimator
CRLB: Cramer Raó Lower Bound
Efficient: attains CRLB
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Estimation Theory in a nutshell

The CRLB

Cramer Raó Lower Bound (CRLB)

CRLB I
If

E
{
∂ln p(x; θ)

∂θ

}
= 0

then

Var
{
θ̂
}
≥ 1

−E
{
∂2 ln p
∂θ2

}

CRLB II
When the factorisation

∂ln p(x; θ)

∂θ
= I(θ) (g(x)− θ)

can be done, the the MVUE is

θ̂MVUE = g(x) Var{θ̂} =
1

I(θ)

Fisher Information
I(θ) measure of information content in sampleset
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Known pdf

Completely known pdf

Signal model

xk = θ + wk

Noise pdf: pk (w) = p(w)∀k
p(w) known, e.g. ∼ N (0, σ2)

Fusion center estimates θ from all xk
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Known pdf

Completely known pdf

The clairvoyant estimator

Assumption
No bandwidth constraints (i.e. sensors can send real values to
fusion center)

θ̂ =
1
K

K∑
k=1

xk

Var(θ̂) =
σ2

K

Attains CRLB: MVUE
Variance scales with O

( 1
K

)
Problem: nothing new ;-)
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Known pdf

Completely known pdf

Bandwidth constraint

Idea
Define a binary threshold for sensors. Use the output as
indicator variables.

Use 1 Bit per sensor: Lk = 1

mk (xk ) =

{
1 xk ≥ τc

0 xk < τc

mk is bernoulli-distributed with parameter q = P(xk ≥ τc)
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Known pdf

Completely known pdf

1 bit estimator I

Probability of seeing a one

q = P(xk ≥ τk ) = Fw (τc − θ)

Inverting Fw

θ = τc − F−1
w (q)
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Known pdf

Completely known pdf

1 bit estimator II

Estimating q

Given all mk observations, estimate q using the MLE:

q̂ =
1
K

K∑
k=1

mk

The 1 bit estimator
Using the invariance property, obtain

θ̂MLE = τc − F−1
w

(
1
K

K∑
1

mk

)
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Known pdf

Completely known pdf

1 bit estimator III

Alternatively, find by MLE by maximizing the log-likelihood:

L(θ) =
K∑

k=1

mk ln q(θ) + (1−mk ) ln (1− q(θ))

(observations i.i.d)
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Known pdf

Completely known pdf

Performance I

The CRLB

Var(θ̂) ≥ 1
K

(
p2(τc − θ)

F (τc − θ)[1− F (τc − θ)]

)−1

:= B(θ)

Defining ∆c := τc−θ
σ

B(θ) =
σ2

K
2πQ(∆c)[1−Q(∆c)]

e−∆c

Performance is dependent on distance τc − θ
Best performance when τc = θ

Variance increase only π
2

Problem: We need to know the unknown parameter
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Known pdf

Completely known pdf

Performance II

The maximum

Bmin = arg min
∆c
B(θ) =

2πσ2

4K

Bound on CRLB
Using the Chernoff bound:

B(θ) ≤ π

2
σ2

K
e

1
2

(
(τc−θ)

σ

)2
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Known pdf

Completely known pdf

Simulation results

Simulation parameters

σ2 = 0.5
θ = 1
τc = θ + σ ≈ 1.707
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Known pdf

Completely known pdf

Iterative Estimator

τ
(i)
c = θ̂(i−1)

B(θ)→∞ as τc − θ →∞
Problem not unique to a particular estimator (CRLB)
The higher |Θ1 −Θ2| the more difficult to select τc

Q-SNR

γ :=
|Θ1 −Θ2|2

σ2
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Known pdf

Completely known pdf

Conclusion

Just one bit per sensor can be enough
O( 1

K ) remains valid
Problematic assumption: τc = θ

Iterative calculation possible
Dynamic range gives the Q-SNR
pdf must be fully known (including variance)
Not for realistic scenarios
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Known pdf

Unknown parameters

Signal model

General

xk = θ + wk

pw (w ; Ψ) Ψ ∈ RLx1

Simplification
Only variance unknown:

xk = θ + σvk
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Known pdf

Unknown parameters

Idea
Define two thresholds τ1, τ2

Bk :=

{
(τ1,∞) := B1 for k = 1, . . . ,K/2
(τ2,∞) := B1 for k = K/2 + 1, . . . ,K

mk (xk ) =

{
1 xk ≥ τj

0 xk < τj
j ∈ {1,2}

Bernoulli distributed q

q =

Pr{xk ≥ τ1} = Fv

(
τ1−θ
σ

)
k = 1, . . . ,K/2

Pr{xk ≥ τ2} = Fv

(
τ2−θ
σ

)
k = K/2 + 1, . . . ,K
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Known pdf

Unknown parameters

MLE of observations

q̂1 =
2
K

K/2∑
k=1

mk q̂2 =
2
K

K∑
k=K/2+1

mk

The estimator
Solving nonlinear 2x2-mapping: (θ, σ)→ (q1,q2):

θ̂MLE =
F−1

v (q̂2)τ1 − F−1
v (q̂1)τ2

F−1
v (q̂2)− F−1

v (q̂1)
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Known pdf

Unknown parameters

Performance

CRLB

Var(θ̂) ≥ 2σ2

K

(
∆1∆2

∆2 −∆1

)2
[

q1(1− q1)

p2
v (∆1)∆2

1
+

q2(1− q2)

p2
v (∆2)∆2

2

]
:= B(θ)

B(θ) is a linearcombination
Performance still O

( 1
K

)
Q-SNR should be small
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Known pdf

Unknown parameters

L parameters

L + 1 regions and groups
e.g. Gaussian mixture pdf
MLE can be found in closed form
performance penalty small when γ is
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Known pdf

Vector Parameters in Gaussian Noise

Signal model

xk = fk (Θ) + wk

wk ∼ N (0, σ2
k ) are known with pdf pk (w) and ccdf Fk (w)

May change from sensor to sensor
fk : Rp → R
fk generally nonlinear
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Known pdf

Vector Parameters in Gaussian Noise

1 bit estimator I

As before:

Define 1 bit messages: mk (xk ) =

{
1 xk ≥ τk

0 xk < τk

mk is bernoulli distributed, as before
qk = Prob(xk ≥ τk ) = Fk (τk − fk (Θ))
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Known pdf

Vector Parameters in Gaussian Noise

1 bit estimator II

The likelihoodfunction
Multiply their pdfs (samples i.i.d.):

L(Θ) =
K∑

k=1

mk ln qk + (1−mk ) ln (1− qk )

The MLE
And find

Θ̂MLE = arg max
Θ

L(Θ)
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Known pdf

Vector Parameters in Gaussian Noise

Finding the MLE I

cannot be found in closed form
numerical solution
multimodal function
values close to zero
numerical ill-conditioning, e.g. saddle-points
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Known pdf

Vector Parameters in Gaussian Noise

Finding the MLE II

Theorem
L(Θ) is log-concave if

noise pdfs are log-concave
fn is linear

Proof.
wk are log-concave
regions Rk := (τk ,∞) and R̄k are halflines
R and R̄ convex sets
qk and 1− qk are integrals of wk
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Known pdf

Vector Parameters in Gaussian Noise

Performance I

CRLB scalar case: quantized vs. clairvoyant

B(θ) =
1
K

F (τ − θ)[1− F (τ − θ)]

p2(τ − θ)︸ ︷︷ ︸
ρ2

vs. Var(x̄) =
1
K
σ2

Idea
Define equivalent noise powers:

ρk =
Fk (τk − fk (Θ))[1− Fk (τk − fk (Θ))]

p2(τk − fk (Θ))

and
ρ := (ρ1, . . . , ρK )T
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Known pdf

Vector Parameters in Gaussian Noise

Performance II

Equivalent noise increase

Estimating a vector parameter increases noises with factor ρ2
k
σ2

k

Optimally setting thresholds τk can lead to small penalty of π2 :

ρ2
k =

π

2
σ2

k
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Known pdf

Vector Parameters in Gaussian Noise

Vector observations

xk = fk (Θ) + wk

Whitening

wk must be white: C = σ2I
C and C−1 positive definite
Cholesky factorisation: C−1 = DT D
w′ = Dw
Linear model: x = HΘ + w
Dx = DHΘ + Dw = x′ = H′Θ + w′
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Known pdf

Vector Parameters in Gaussian Noise

Ex: Estimating a vector flow

Signal model

xk =< v,n > +wk = v0 sinφk +v1 cosφk +wk

Place thresholds at
τk = v0 sinφk + v1 cosφk

ρ2
k = (π/2)σ2

Let φk ∼ U(−π, π)

Ī = 2
πσ2

(
N/2 0

0 N/2

)



Bandwidth-Constrained Estimation in Wireless Sensor Networks

Universal methods

Homogeneous Environments

Signal model

xk = θ + wk θ,wk ∈ [−U,U]

Remarks
wk spatially uncorrelated, zero mean, unknown
channels are orthogonal and distortionless

Remember

BLUE θ̄ is optimal with mse σ2/K
network scales lin. with sensors



Bandwidth-Constrained Estimation in Wireless Sensor Networks

Universal methods

Homogeneous Environments

The estimator

Idea
1/2 sensors quantize to 1-MSB, 1/4 to 2-MSB etc.

mse ≤ 4U2/K
mse ≥ U2/(4K )

FC required
network size K required
not isotropic
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Universal methods

Homogeneous Environments

Isotropic estimator

Better idea

Each sensor flips a coin with Pr(a = j) = αj = 1
2j , j = 1, . . . ,∞

Coding
Local messages are coded by

m(x ,a) = [b(2U + x ; a); a]

Message length

`(m(x ,a)) = 1 + dlog2 ae
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Universal methods

Homogeneous Environments

Set for each bit

Nj = {k |ak = j , 1 ≤ k ≤ i} j = 1,2,3, . . .

Estimate
sum up each bits per position

yj = b(2U + x ; j) +
∑
k∈Nj

b(2U + xk ; ak )

θ̂ = fi(x ,m(x1,a1), . . . ,m(xi ,ai)) = −2U + 4U
∞∑

j=1

2−j

Nj + 1
yj
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Universal methods

Homogeneous Environments

mse ≤ 4U2/(i + 1)

ad-hoc estimating
robust and isotropic
independent of noise pdf
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Universal methods

Inhomogeneous Environments

Signal model

xk = θ + wk

wk uncorrelated, zero mean, different variances

BLUE: θ̂BLUE =
(∑K

k=1
1
σ2

k

)−1∑K
k=1

xk
σ2

k
with

mse(θ̂) =
(∑K

k=1
1
σ2

k

)−1

Idea: Message related to local SNR
quantize more MSB
send more bits
different weighting factors
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Universal methods

Inhomogeneous Environments

Quantizing

Message length

Mk =

⌈
log

W
σk

⌉

Coding

mk (xk ,ak ,Mk ) =

Mk∑
i=1

bi2−i + 2−Mk bMk +ak

with Pr(a = i) = 2−i
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Universal methods

Inhomogeneous Environments

Estimator

Estimator

θ̂ = Γ(m1, . . . ,mK ) =

(
K∑

k=1

22Mk

)−1 K∑
k=1

22Mk W (2mk − 1)

Performance

mse(θ) ≤ 25
8

(
K∑

k=1

1
σ2

k

)−1
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Universal methods

Inhomogeneous Environments

Simulation I

Asymptotic efficiency

asymptotic efficiency :=
1

MSE ·
∑K

k=1
1
σ2

k

Parameters

θ = 1
V = 3
U = 6
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Universal methods

Inhomogeneous Environments

Simulation II

Numer of bits

Mk + 1 =

⌈
log

W
σk

⌉
+ 1

Average message length

M̄k = {3.8,3.88,3.83,3.78,3.77,3.77}
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Universal methods

Channel-constrained Estimation

Power consumption

Each sensor Lk bits
Sensors to FC
TDMA
QAM with 2Lk bits with pk

b

Distance dk with pathloss exponent α: ak = dαk
sensor sampling rate Bs

Transmit power

Pk = Bs 2Nf N0Gdak

(
log

(
2
pk

b

))
(2Lk − 1)︸ ︷︷ ︸

Ek
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Universal methods

Channel-constrained Estimation

The optimal Lk

Pq norm

‖P‖q =

(
K∑

k=1

Pq
k

)1/q

Message length

Lopt
k (σk ,ak ) = log

1 +
W
σk

√(
η0

ak
− 1
)+
 , η0 = f (D0,ak , σk )

threshold η0: Lk = Pk if ak ≥ η0

message length proportional to local SNR
scales by channel path gain
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Universal methods

Channel-constrained Estimation

Simulation
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Universal methods

Bayes Estimation

MMSE

The MMSE

BMSE{θ̂} =

∫ ∫
(θ̂ − θ)2p(x , θ) dθ dx

=

∫ [∫
(θ̂ − θ)2p(θ|x) dθ

]
p(x)︸︷︷︸
≥0

dx

0 !
=

∂

∂θ̂

∫
(θ̂ − θ)2p(θ|x) dθ

⇒ θ̂ =

∫
θp(θ|x) dθ = E{θ|x}

Exhaustive numerical integration necessary!
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Universal methods

Bayes Estimation

MAP

θ̂MAP = arg max
θ

p(x |θ)p(θ)

no closed form
generalized maximum likelihood estimator
numerical maximization
MAP→ MLE if K large
concavity?
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Universal methods

Bayes Estimation

The estimator

θ̂MAP = arg max
θ

[
K∑

k=1

log Fw [hmk (θ − µ0)] + log pθ(θ)

]
:= arg max

θ
L(θ)

Concavity of Fw and pθ(θ)?

Performance?

L :=
MSE(θ̂)

MSE(θ̂CV )
≈ I(θ̂CV )

I(θ̂)
=
π

2

√
1 + γ
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Other topics

Other topics

Distributed kalman filtering/target tracking
Distributed estimating stochastic processes
SOI-KF
Target tracking

Information theoretic aspects
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